5-minute tutorial
Migrate Apache Kafka to Amazon S3 in 60 Seconds
Learn how to copy your Apache Kafka data to Amazon S3 with a single command using ingestr - no code required.
What you'll learn
Prerequisites
- Python 3.8 or higher installed
- Kafka cluster access
- Consumer group permissions
- AWS credentials
- S3 bucket access permissions
Step 1: Install ingestr
Install ingestr in seconds using pip. Choose the method that works best for you:
Recommended: Using uv (fastest)
# Install uv first if you haven't already
pip install uv
# Run ingestr using uvx
uvx ingestr
Alternative: Global installation
# Install globally using uv
uv pip install --system ingestr
# Or using standard pip
pip install ingestr
Verify installation: Run ingestr --version
to confirm it's installed correctly.
Step 2: Your First Migration
Let's copy a table from Apache Kafka to Amazon S3. This example shows a complete, working command you can adapt to your needs.
Set up your connections
Apache Kafka connection format:
kafka://?bootstrap_servers=localhost:9092&group_id=test_group&security_protocol=SASL_SSL&sasl_mechanisms=PLAIN&sasl_username=example_username&sasl_password=example_secret&batch_size=1000&batch_timeout=3
Parameters:
- • bootstrap_servers: Kafka server or servers to connect to (host:port format)
- • group_id: Consumer group ID for identifying the client
- • security_protocol: Protocol for broker communication (e.g., SASL_SSL)
- • sasl_mechanisms: SASL mechanism for authentication (e.g., PLAIN)
- • sasl_username: Username for SASL authentication
- • sasl_password: Password for SASL authentication
- • batch_size: Number of messages to fetch per batch (default: 3000)
- • batch_timeout: Maximum wait time for messages in seconds (default: 3)
Amazon S3 connection format:
s3://?access_key_id=<your_access_key_id>&secret_access_key=<your_secret_access_key>&endpoint_url=<endpoint_url>&layout=<layout>
Parameters:
- • access_key_id: AWS access key ID
- • secret_access_key: AWS secret access key
- • endpoint_url: URL of S3-compatible API server (for destinations)
- • layout: Layout template for file organization (for destinations)
BigQuery Setup Required
Before running the command:
- Create a service account in Google Cloud Console
- Grant it BigQuery Data Editor and Job User roles
- Download the JSON key file
- Use the path to this file in your connection string
Run your first copy
Copy the entire users table from Apache Kafka to Amazon S3:
ingestr ingest \
--source-uri 'kafka://?bootstrap_servers=localhost:9092&group_id=test_group' \
--source-table 'public.users' \
--dest-uri 's3://?access_key_id=AKC3YOW7E&secret_access_key=XCtkpL5B' \
--dest-table 'raw.users'
What this does:
- • Connects to your Apache Kafka database
- • Reads all data from the specified table
- • Creates the table in Amazon S3 if needed
- • Copies all rows to the destination
Command breakdown:
--source-uri
Your source database--source-table
Table to copy from--dest-uri
Your destination--dest-table
Where to write data
Step 3: Verify your data
After the migration completes, verify your data was copied correctly:
Check row count in Amazon S3:
-- Run this in Amazon S3
SELECT COUNT(*) as row_count
FROM raw.users;
-- Check a sample of the data
SELECT *
FROM raw.users
LIMIT 10;
Advanced Patterns
Once you've mastered the basics, use these patterns for production workloads.
Only copy new or updated records since the last sync. Perfect for daily updates.
ingestr ingest \
--source-uri 'kafka://?bootstrap_servers=localhost:9092&group_id=test_group' \
--source-table 'public.orders' \
--dest-uri 's3://?access_key_id=AKC3YOW7E&secret_access_key=XCtkpL5B' \
--dest-table 'raw.orders' \
--incremental-strategy merge \
--incremental-key updated_at \
--primary-key order_id
How it works: The merge strategy updates existing rows and inserts new ones based on the primary key. Only rows where updated_at
has changed will be processed.
Common Use Cases
Ready-to-use commands for typical Apache Kafka to Amazon S3 scenarios.
Daily Customer Data Sync
Keep your analytics warehouse updated with the latest customer information every night.
# Add this to your cron job or scheduler
ingestr ingest \
--source-uri 'kafka://?bootstrap_servers=localhost:9092&group_id=test_group' \
--source-table 'public.customers' \
--dest-uri 's3://?access_key_id=AKC3YOW7E&secret_access_key=XCtkpL5B' \
--dest-table 'analytics.customers' \
--incremental-strategy merge \
--incremental-key updated_at \
--primary-key customer_id
Historical Data Migration
One-time migration of all historical records to your data warehouse.
# One-time full table copy
ingestr ingest \
--source-uri 'kafka://?bootstrap_servers=localhost:9092&group_id=test_group' \
--source-table 'public.transactions' \
--dest-uri 's3://?access_key_id=AKC3YOW7E&secret_access_key=XCtkpL5B' \
--dest-table 'warehouse.transactions_historical'
Development Environment Sync
Copy production data to your development Amazon S3 instance (with sensitive data excluded).
# Copy sample data to development
ingestr ingest \
--source-uri 'kafka://?bootstrap_servers=localhost:9092&group_id=test_group' \
--source-table 'public.products' \
--dest-uri 's3://?access_key_id=AKC3YOW7E&secret_access_key=XCtkpL5B' \
--dest-table 'dev.products' \
--limit 1000 # Only copy 1000 rows for testing
Troubleshooting Guide
Solutions to common issues when migrating from Apache Kafka to Amazon S3.
Connection refused or timeout errors
Check your connection details:
Authentication failures
Common authentication issues:
Schema or data type mismatches
Handling data type differences:
- ingestr automatically handles most type conversions
Performance issues with large tables
Optimize large data transfers:
- Use incremental loading to process data in chunks
- Run migrations during off-peak hours
- Split very large tables by date ranges using interval parameters
Ready to scale your data pipeline?
You've learned how to migrate data from Apache Kafka to Amazon S3 with ingestr. For production workloads with monitoring, scheduling, and data quality checks, explore Bruin Cloud.