Skip to content

HTTP

ingestr supports reading CSV, JSON, and Parquet files from public HTTP/HTTPS URLs. This allows you to ingest data from publicly accessible file URLs directly into your databases.

URI format

The URI format for HTTP sources is as follows:

plaintext
http://example.com/path/to/file.csv
https://example.com/path/to/file.json
https://example.com/path/to/file.parquet

Supported file formats

The HTTP source supports the following file formats:

  • CSV (.csv) - Comma-separated values files with headers
  • CSV Headless - CSV files without headers (use #csv_headless suffix)
  • JSON (.json, .jsonl) - JSON objects and JSON Lines format
  • Parquet (.parquet) - Apache Parquet columnar format

The file format is automatically inferred from the URL extension. You can also explicitly specify the format using the #format suffix in the --source-table parameter.

Usage

Basic example

bash
ingestr ingest \
    --source-uri "https://example.com/data.csv" \
    --source-table "data" \
    --dest-uri "duckdb:///local.duckdb" \
    --dest-table "my_table"

Specifying file format explicitly

If the URL doesn't have a recognizable extension (e.g., an API endpoint), you can specify the format using the #format suffix in --source-table:

bash
ingestr ingest \
    --source-uri "https://example.com/api/export" \
    --source-table "data#csv" \
    --dest-uri "duckdb:///local.duckdb" \
    --dest-table "my_table"

CSV without headers

For CSV files that don't have a header row, use #csv_headless. You can optionally provide column names using the --columns flag:

bash
# With custom column names
ingestr ingest \
    --source-uri "https://example.com/data.csv" \
    --source-table "data#csv_headless" \
    --columns "id:bigint,name:text,value:double" \
    --dest-uri "duckdb:///local.duckdb" \
    --dest-table "my_table"

If no column names are provided, columns will be automatically named unknown_col_0, unknown_col_1, etc.:

bash
# Without column names (auto-generated)
ingestr ingest \
    --source-uri "https://example.com/data.csv" \
    --source-table "data#csv_headless" \
    --dest-uri "duckdb:///local.duckdb" \
    --dest-table "my_table"

Example with JSON file

bash
ingestr ingest \
    --source-uri "https://api.example.com/export/data.json" \
    --source-table "data" \
    --dest-uri "snowflake://user:pass@account/database/schema" \
    --dest-table "json_data"

Example with Parquet file

bash
ingestr ingest \
    --source-uri "https://storage.example.com/data.parquet" \
    --source-table "data" \
    --dest-uri "bigquery://project/dataset" \
    --dest-table "parquet_data"

Supported format suffixes

You can use these suffixes with --source-table to explicitly specify the file format:

SuffixFormat
#csvCSV with headers
#csv_headlessCSV without headers
#jsonJSON
#jsonlJSON Lines
#parquetParquet

Notes

  • The --source-table parameter is required; use it to specify the format suffix if needed (e.g., data#csv_headless)
  • The HTTP source downloads the entire file before processing, so ensure you have sufficient memory for large files
  • Authentication is not currently supported; only publicly accessible URLs can be used
  • The file must be accessible without requiring cookies, headers, or other authentication mechanisms
  • For very large files, consider using a dedicated file storage source (e.g., S3, GCS)
  • Data is processed in chunks internally:
    • CSV: 10,000 rows per chunk
    • JSON: 1,000 objects per chunk
    • Parquet: 10,000 rows per chunk

Limitations

  • Only supports public URLs (no authentication)
  • The entire file is downloaded into memory before processing
  • No support for incremental loading